
Algorithms for Multivariate Newton-Raphson for Optimization
When the Hessian Matrix is a Constant plus a Diagonal

Max Sklar
Local Maximum Labs

May 20, 2023

Abstract

This paper concerns the special case of multivariate Newton’s Method for optimization where the
Hessian Matrix is composed of a diagonal matrix plus a constant term. It derives an algorithm for a
single Newton step given the diagonal, constant, and gradient. It also derives an alternative algorithm in
log-space for functions acting on positive inputs. Additional steps and definitions are provided to guide
those revisiting their knowledge in algorithms, linear algebra and vector calculus.

1 Introduction

The Newton-Raphson method (or Newton’s method) is a way to approximate a solution to the equation
f(x) = 0 for a differentiable function f . The method works by starting at an initial value x0 and successively
updating it using the formula

xi+1 = xi −
f(x0)

f ′(x0)
.

This process continues until it converges, which is not guaranteed. When one wants to find a local maximum
or local minimum of f , this is equivalent to finding the root of f ′(x). If f ′(x) is itself differentiable, this
leads to the iteration formula

xi+1 = xi −
f ′(x0)

f ′′(x0)
.

One might wish to find a local maximum or minimum of a vector function f : RK → R. This requires
multivariate Newton-Raphson, with generalized formula

x′ = x−H−1g.

Here, g is the gradient of f , akin to the derivative. H represents the Hessian Matrix which is a generalization
of the second order derivative1.

These methods are related to the gradient descent algorithms used in machine learning. In its simplest form,
gradient descent sets x′ = x−λg. By using the Hessian matrix to affect the learning rate λ, the centuries-old
Newton’s method is a great way to speed up gradient descent.

1Note that we are taking x′ to mean the next value of x and not a derivative.



Sometimes inverting the hessian matrix is computationally impractical. In this case, the diagonal of the
hessian matrix may be used instead[1]. However, there can be benefits to using the full Hessian in order to
speed up convergence.

This technical note shows how one can invert the hessian matrix when it is a constant plug a diagonal
using the matrix inversion lemma. This technique appears many times in statistical and machine learning
literature, but many details are left to fill in both for manipulating the equations and turning them into a
computational algorithm. Even though the process is a somewhat mechanical application of linear algebra,
it can be quite complicated and some readers have requested a more detailed explanation of the chain of
logic.

We aim to provide this here. This paper still requires a background in linear algebra and multivariate
calculus, but more of the steps are included. It will help any readers with at least an undergraduate level
understanding of linear algebra to fill in the missing steps.

2 Multivariate Newton’s Method

Let f : RK → R be an objective function for which we want to find a maximum argmaxα f(α). We decide
to use Newton’s Method if we are satisfied with a local maximum, or if f is convex and can be shown to
only have a global maximum.

We start with an initial value of α and take a step as defined below to find the next value of f(α). We
iterate until convergence. Hopefully!

Let g be the gradient2 of f with respect to α. The gradient g(α) can be explicitly represented as a column
vector (appendix A).

g(α) = g = ∇f(α) =



∂f
∂α0

∂f
∂α1

...

∂f
∂αK−1


.

Now, let the matrix H be the Hessian matrix of the function f at α, represented explicitly as

2For the duration of this paper, we will use g as shorthand for g(α), and f as shorthand for f(α), etc. Having (α) peppered
throughout formulas does not do us any favors with regard to readability, despite being technically correct.

2



H =



∂2f
∂α2

0

∂2f
∂α0∂α1

· · · ∂2f
∂α0∂αK−1

∂2f
∂α1∂α0

∂2f
∂α2

1
· · · ∂2f

∂α1∂αK−1

...
...

. . .
...

∂2f
∂αK−1∂α0

∂2f
∂αK−1∂α1

· · · ∂2f
∂α2

K−1


.

A Newton step for maximizing f(α) is defined as

α′ = α+∆α = α−H−1g,

where α′ is the updated vector after a single iteration, and H−1 is the inverse of the Hessian matrix at α.
Our goal is to find the step size ∆α = −H−1g given by the product of the inverse Hessian matrix and the
gradient.

3 Diagonal and Constant Matrix Case

We consider the case where the Hessian matrix H can be broken down into the sum

H = D + C

where D is a diagonal matrix and C is a constant matrix. Suppose that D is formed from the vector
d = [d0, d1, . . . , dK−1]

⊤ (appendix B) so that

D = diag(d) =


d0 0 · · · 0

0 d1 · · · 0
...

...
. . .

...

0 0 · · · dK−1



Let 1K be a vector of 1s with K entries:

1K = [1, 1, . . . , 1]⊤.

The constant matrix C is defined as the outer product (appendix A) of 1K and itself, scaled by the constant
c:

C = c · 1K1⊤
K = c ·


1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

 =


c c · · · c

c c · · · c
...

...
. . .

...

c c · · · c

 .

3



4 Solution Using the Matrix Inversion Lemma

The Woodbury matrix inversion lemma[2] is given as follows:

Let A ∈ Rn×n be an invertible matrix, U ∈ Rn×k, V ∈ Rk×n, and C ∈ Rk×k. If C−1 + V A−1U is invertible,
then the inverse of the matrix A+ UCV can be expressed as:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

In our circumstances, we can use a special case of this lemma known as the Sherman-Morrison formula[3]:

Let A ∈ Rn×n be an invertible matrix, with u,v ∈ Rn.

(
A+ uv⊤)−1

= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
(1)

In order to apply this to our question, we work with dimention K instead of n, and make the correspondence
A

u

v

→


D

c1K

1K

 .

By plugging this correspondence into equation 1, we get

H−1 =
(
D + c1K1⊤

K

)−1
= D−1 − D−1c1K1⊤

KD−1

1 + 1⊤
KD−1c1K

= D−1 − D−11K1⊤
KD−1

c−1 + 1⊤
KD−11K

.

Fortunately, the inverse of a diagonal matrix D can be computed by simply taking the multiplicative inverses
of the diagonal elements (appendix B). Therefore, we define d−1 as the vector of values along the diagonal
of D−1.

d−1 = [d−1
0 , d−1

1 , . . . , d−1
K−1]

⊤ D−1 = diag(d−1)

Notice the following interactions between D−1 and 1K :

D−11K = d−1 1⊤
KD−1 = d−1T 1KD−11⊤

K =

K−1∑
k=1

d−1
k

Using these equivalences, we can simplify our formula to H−1 = D−1 − d−1d−1T

c−1+
∑K−1

k=1 d−1
k

.

We now let Z = c−1 +
∑K−1

k=1 d−1
k to get H−1 = D−1 − d−1d−1T

Z . To get the next Newton step, we multiply
this by g to get the following.

4



∆α = −H−1g = −D−1g +
d−1d−1T

Z
g = −D−1g +

d−1d−1Tg

Z

Now we find a formula for a single component k of ∆α. (see appendix B for manipulation of D−1g).

(∆α)k = −
(
D−1g

)
k
+

(
d−1d−1Tg

Z

)
k

= −gk
dk

+

(
1

Z

)
d−1 · g
dk

Let S = d−1 · g to get

(∆α)k = −gk
dk

+

(
S

Z

)
1

dk
=

S · Z−1 − gk
dk

This process directly translates to algorithm 1.

Algorithm 1 Algorithm for a Newton Step

function Step(g ∈ RK ,d ∈ RK , c ∈ R)
S ← 0
for k = 0 to K − 1 do

S ← S + g[k]/d[k]

Z ← 1/c
for k = 0 to K − 1 do

Z ← Z + 1/d[k]

δ ∈ RK

for k = 0 to K − 1 do
δ[k]← (S/Z − g[k])/d[k]

return δ

5 Newton Step in Log Space

Suppose that the values of α are all required to be positive. Sometimes, the Newton step will cause an αk

to go negative, which is out of bounds. If this is the case, we can instead find a step on a function applied
to the vector β where

β = [ln(α0), ln(α1), . . . , ln(αK−1)]
⊤.

We now say that the vector β lives in log space, meaning that every possible value will lead to a vector of
only positive elements α to be passed into f. We now have a new objective function

f∗(β) = f(α)

.

5



Notice that f∗ and f are actually the same function on transformed inputs, so when looked at from the
perspective of these being values dependent on the inputs, f∗ = f with each being uniquely determined by
either α or β (which are determined by each other). We also note that the derivative of a component of α
with respect to the same component of β is

∂αk

∂βk
=

∂

∂βk
eβk = eβk = αk.

We will find a log-space gradient g∗ to distinguish it from the old gradient. The gradient is now

g∗k =
∂

∂βk
f =

∂f

∂αk

∂αk

∂βk
= gkαk.

To find the log-space Hessian H∗, we look at a single component h∗
i,j to get

h∗
i,j =

∂

∂βi

∂

∂βj
f =

∂

∂βi
gjαj = hi,jαjαi + gj

∂αj

∂βi
= hi,j(α)αjαi + gjIi,jαj .

Ii,j is the indicator function which is equal to 1 when i = j and 0 otherwise. For the old hessian (H), we
know that hi,j = c + Ii,jdi. This forces the di terms to only appear on the diagonal3 With the ability to
break down hi,j , our equation is now

h∗
i,j = (c+ Ii,jdi)αjαi + gjIi,jαi = cαjαi + Ii,j

(
α2
i di + giαi

)
.

For convenience, define the vector x ∈ RK with xi = αidi + gi. This simplifies the hessian formula to

h∗
i,j = cαjαi + Ii,jαixi.

Note that instead of a constant matrix, we have a constant c multiplied by the outer product of α with
itself. The outer product is illustrated here, and note how it generates the term αjαi.

αα⊤ =


α0

α1

...

αK−1


[
α0 α1 · · · αK−1

]
=


α2
0 α0α1 · · · α0αK−1

α1α0 α2
1 · · · α1αK−1

...
...

. . .
...

αK−1α0 αK−1α1 · · · α2
K−1

 .

Let D∗ = diag(α) diag(x). We can now piece together the full version of the hessian as

H∗ = cαα⊤ + diag(α) diag(x) = D∗ +αcα⊤.

3We could equivalently write dj as i = j, but let’s use the first subscript as a standard.

6



This still fits with the Sherman-Morrison formula (equation 1). The difference is that we have a new
correspondence which is 

A

u

v

→

D∗

cα

α

 .

We can now invert the log-space hessian by plugging these values in to equation 1.

H∗−1 =
(
D∗ + cαα⊤)−1

= D∗−1 − D∗−1cαα⊤D∗−1

1 +α⊤D∗−1cα

To get a Newton step, we multiply this by the gradient g∗ to get

∆β = −H∗−1g∗ = −D∗−1g∗ +
D∗−1cαα⊤D∗−1g∗

1 +α⊤D∗−1cα
.

Now to find a single component k:

(∆β)k = − g∗k
αkxk

+

[
D∗−1αα⊤D∗−1g∗]

k

(c−1 +α⊤D∗−1α)

The pre-multiplication by D∗−1 in the numerator will simply divide each term by αkxk, allowing us to
further simplify to:

(∆β)k = − g∗k
αkxk

+

[
αα⊤D∗−1g∗]

k

αkxk(c−1 +α⊤D∗−1α)

Finally, note that α⊤D∗−1g∗ is a scalar equivalent to the dot product α · D∗−1g∗. This allows us to pull
this dot product out, and then extract the field from the first α like so:

(∆β)k = − g∗k
αkxk

+
αk

[
α⊤D∗−1g∗]

αkxk(c−1 +α⊤D∗−1α)
= − g∗k

αkxk
+

α⊤D∗−1g∗

xk(c−1 +α⊤D∗−1α)

Now we make some replacements for the scalar terms to make this more readable. Start with Z for the term
in the denominator.

Z = c−1 +α⊤D∗−1α =
1

c
+

K−1∑
k=0

α2
k

αkxk
=

1

c
+

K−1∑
k=0

αk

xk

Next find a formula for S, the term in the numerator.

7



S = α⊤D∗−1g∗ =

K−1∑
k=0

αkg
∗
k

αkxk
=

K−1∑
k=0

g∗k
xk

=

K−1∑
k=0

αkgk
xk

We put it together for a final, simplified form.

(∆β)k = − g∗k
αkxk

+
S

xkZ
=

1

xk

(
− g∗k
αk

+
S

Z

)
=

1

xk

(
S

Z
− gk

)

Finally, this translates into the following algorithm:

Algorithm 2 Algorithm for a Newton Step In Log Space

function StepInLogSpace(α ∈ RK ,g ∈ RK ,d ∈ RK , c ∈ R)
x ∈ RK

for k = 0 to K − 1 do
x[k]← g[k] + α[k] · d[k]

Z ← 1/c
for k = 0 to K − 1 do

Z ← Z + α[k]/x[k]

S ← 0
for k = 0 to K − 1 do

S ← S + α[k] · g[k]/x[k]
δ ∈ RK

for k = 0 to K − 1 do
δ[k]← (S/Z − g[k])/x[k]

return δ

Given that this is a Newton step on β, we must take care to understand how it affects α. If the next value
for β is β +∆β, then the next value of α is actually

α′
k = eβ

′
k = eβk+(∆β)k = eβk · e(∆β)k = αk · e(∆β)k

This formula allows us to use algorithm 2 in order to find ∆β which could then be used to find the next set
of positive components of α.

Appendices

A Inner and Outer Products

Unless noted otherwise, a vector is assumed to be a column vector, meaning that its components are arranged
as a single column with multiple rows. For a vector a ∈ RK , the column vector form is:

8



a =


a0

a1
...

ak−1

 .

A row vector has a single row and multiple columns. It is the transpose of a column vector give a as follows.

a⊤ =
[
a0 a1 · · · aK−1

]
.

The dot product of two vectors a, b ∈ RK is defined as the sum of the products of their corresponding
components.

a · b =

K−1∑
i=0

aibi.

The matrix multiplication of a row vector and a column vector results in a 1× 1 matrix (or a scalar) whose
single component is the dot product of the two vectors. Given a row vector a⊤ and a column vector b both
of dimension K (or rather dimensions 1×K and K × 1), their matrix multiplication is:

a⊤b =
[
a0 a1 · · · aK−1

]


b0

b1
...

bK−1

 =

K−1∑
i=0

aibi = a · b.

Now if instead a column vector (N×1) were multiplied by a row vector (1×M), the resulting N×M matrix
is the outer product.

ab⊤ = a⊗ b =


a0b0 a0b1 · · · a0bM−1

a1b0 a1b1 · · · a1bM−1

...
...

. . .
...

aN−1b0 aN−1b1 · · · aN−1bM−1

 .

B Diagonal Matrices

A diagonal matrix is a type of matrix in which the entries outside the main diagonal are all zero. The main
diagonal entries can be represented by a vector d ∈ RK .

9



The operator diag(d) transforms the vector d into a diagonal matrix D:

D = diag(d) =


d0 0 · · · 0

0 d1 · · · 0
...

...
. . .

...

0 0 · · · dK−1

 .

The inverse of a diagonal matrix D is also a diagonal matrix. The entries of the inverse matrix are the
multiplicative inverses of the entries of D:

D−1 = diag(d−1) =


d−1
0 0 · · · 0

0 d−1
1 · · · 0

...
...

. . .
...

0 0 · · · d−1
K−1

 .

When a diagonal matrix multiplies a vector, the operation is equivalent to element-wise multiplication (or
Hadamard product ⊙) between the vector and the diagonal entries of the matrix:

Dv = diag(d)v = d⊙ v =


d0v0

d1v1
...

dK−1vK−1

 .

References

[1] Becker, S and Lecun, Y., (1988) Improving the convergence of backpropagation learning with second-
order methods. In Proceedings of the 1988 Connectionist Models Summer School, San Mateo, D. Touret-
zky, G. Hinton, and T. Sejnowski, Eds. Morgan Kaufmann, 1989, pp. 29–37.

[2] Woodbury, M. A. (1950). Inverting modified matrices. Memorandum report 42, Statistical Research
Group. Princeton University.

[3] Sherman, Jack, and Winifred J. Morrison. (1950). Adjustment of an inverse matrix corresponding to a
change in one element of a given matrix. The Annals of Mathematical Statistics 21.1 (1950): 124-127.

This document along with revisions is posted at GitHub as https://github.com/maxsklar/research under
the folder diagonal constant hessian note. See readme for contact information. Local Maximum Labs is
an ongoing effort create an disseminate knowledge on intelligent computing.

10

https://github.com/maxsklar/research

	Introduction
	Multivariate Newton's Method
	Diagonal and Constant Matrix Case
	Solution Using the Matrix Inversion Lemma
	Newton Step in Log Space
	Appendices
	Inner and Outer Products
	Diagonal Matrices

